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Abstract 

 Frequent pattern mining is one of the active 

research themes in data mining. It is an important 

role in all data mining tasks such as clustering, 

classification, prediction and association analysis. 

Frequent pattern is the most time consuming 

process due to a massive number of patterns 

generated. Frequent patterns are generated by 

using association rule mining algorithms that use 

candidate generation and association rules such as 

Apriori algorithm, and the algorithms without 

candidate set generation and FP-tree such as FP-

growth and DynFP-growth algorithms. In this 

paper, this system used computer sales items for 

generating frequent patterns by applying Apriori, 

FP-Growth and DynFP-Growth algorithms. The 

frequent patterns are used for comparing 

performance results with run time and scalability. 

The scalability and run time of DynFP-Growth 

algorithm is faster than Apriori and FP-Growth 

algorithms. 
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1. Introduction 

    Mining frequent patterns [16] or itemsets are a 

fundamental and essential problem in many data 

mining applications. These applications include the 

discovery of association rules, strong rules, 

correlations, sequential rules, episodes, 

multidimensional patterns, and many other 

important discovery tasks. Algorithm for extracting 

and reconstructing of all association rules shows 

the results of experiments carried out on real 

datasets and it shows the usefulness of each 

approach. Databases, has been adopted for a field 

of research dealing with the automatic discovery of 

implicit information of knowledge within databases 

[9]. The implicit information within databases, and 

mainly the interesting association relationships 

among sets of objects, that lead to association rules, 

may disclose useful patterns for decision support, 

financial forecast, marketing policies, even medical 

diagnosis and many other applications. As shown 

in [10], mining association rules may require 

iterative scanning of large databases [1- 5, 11, 12] 

which is costly in processing. The system consists 

of get transactions from the database, extracting 

frequent itemsets using Apriori algorithm, FP-

Growth algorithm and DynFP-growth algorithm. 

The system creates a transaction file which consists 

of amount of sales data by scanning the data from 

the database. The transaction file includes item 

Names. Then, algorithms are used for mining the 

frequent pattern with the minimum support count. 

This system produces frequent patterns. Finally, the 

system used the frequent patterns for comparing the 

result with run time and scalability. 

      A major step forward in improving the 

performances of these algorithms was made by the 

introduction of a novel, compact data structure, 

referred to as frequent pattern tree, or FP-tree [11], 

and the associated mining algorithm, FP-growth. 

  The main difference between the two approaches 

is that the Apriori-like techniques are based on 

bottom-up generation of frequent itemset 

combinations and the FPtree based ones are 

partition-based, divide-and-conquer methods. After 

conducting several performance studies developed 

an improved FP-tree based technique, named 

Dynamic FP-tree [6]. The developed method 

clearly indicates a performance gain mainly when 

applied on real world sized databases. 

     The remaining of this paper is organized as 

follows. The related work is described in section 2. 

The main aspects of Apriori, FP-growth and 

DynFP-growth algorithms and frequent itemsets 

generation are presented in section 3. Section 4 

described the system design.  The paper is 

concluded in section 5. 

 

2. Related work 



 

 The Apriori [15] is a basic algorithm for 

finding frequent patterns. It has been described by 

several variations for improving efficiency and 

scalability. This algorithm is almost suffered 

inherently from two problems; multiple database 

scans that are costly and generating lots of 

candidates. 

 The frequent pattern tree or FP-tree as a prefix-

based tree structure, and an algorithm called FP-

growth. The FP-tree stores only the frequent items 

in a header table which is sorted in descending 

order. The highly compact nature of FP-tree 

enhances the performance of the FP-growth. The 

FP-tree construction requires two database scans.  

 After conducting several performance studies 

developed an improved FP-tree based technique, 

named Dynamic FP-tree [16]. The developed 

method clearly indicates a performance gain mainly 

when applied on real world sized databases. 

   

3. Mining Frequent Pattern Using     

Algorithms 

3.1. The Apriori Algorithm 

      The Apriori algorithm used the data as shown 

in Table1 for finding all frequent itemsets. The first 

pass of the algorithm simply counts [7] item 

occurrences to determine the large 1-itemsets. A 

subsequent pass, say pass k, consists of two phases. 

First, the large itemsets Lk-1 found in the (k-1)th 

pass are used to generate the candidate itemsets Ck, 

using the Apriori candidate generation function 

(apriori-gen) described below. Next, the database is 

scanned and the support of candidates in Ck is 

counted. For fast counting, an efficient 

determination if the candidates in Ck that are 

contained in a given transaction t is needed. A 

hash-tree data structure [11] is used for this 

purpose. The Apriori algorithm is: 

Input: Database D of transaction s; min-sup 

Output: L, frequent itemsets in D. 

L1 = {large 1-itemsets}; 

for ( k = 2; Lk-1 ≠ Ø; k++ )  

begin 

Ck = apriori-gen(Lk-1); //New candidates 

 forall transactions t € D 

 begin 

Ct = subset(Ck, t); 

//Candidates contained in t 

forall candidates c € Ct do 

c.count++; 

end 

 Lk = { c € Ck | c.count ≥ minsup } 

End Answer = k Lk; 

    The apriori-gen function takes as argument Lk-1, 

the set of all large (k-1)-itemsets. It returns a 

superset of the set of all large k-itemsets and is 

described in [1]. This system used computer sales 

center data items which are described in Table 1. 

Table 1 Transactional Database 

I1=Monitor 

I2=CPU 

I3=Motherboard 

I4=Hard disk 

I5=Memory 

I6=Printer 

I7=Speaker 

I8=Casing 

I9=UPS 

I10=DVDR/W 

 

     

  

 

 

  

 

 

 

 

 

 

 

TID Itemsets 

T1 I1,I2,I3 

T2 I1,I2,I4 

T3 I2,I4 

T4 I1,I2,I5 

T5 I2,I3 

T6 I2,I3 

T7 I1,I3 

T8 I1,I3 

T9 I1,I2,I3,I5 

T10 I1,I2 

Item 

set 

Sup 

count 

I1 7 

I2 8 

I3 6 

I4 2 

I5 2 

Item 

set 

Sup 

count 

I1 7 

I2 8 

I3 6 

I4 2 

I5 2 

Item 

Set 

{I1,I2} 

{I1,I3} 

{I1,I4} 

{I1,I5} 

{I2,I3} 

{I2,I4} 

{I2,I5} 

{I3,I4} 

{I3,I5} 

{I4,I5} 

Item 

Set 

Sup.Co

unt 

{I1,I2} 5 

{I1,I3} 4 

{I1,I4} 1 

{I1,I5} 2 

{I2,I3} 4 

{I2,I4} 2 

{I2,I5} 2 

{I3,I4} 0 

{I3,I5} 1 

{I4,I5} 0 

Itemse

t 
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Cou

nt 

{I1,I2} 5 

{I1,I3} 4 

{I1,I5} 2 

{I2,I3} 4 

{I2,I4} 2 

{I2,I5} 2 

Itemset 
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Itemset Sup.C
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{I1,I2,I3} 2 
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{I1,i3,I5} 1 

{I2,I3,I4} 0 

{I2,I3,I5} 1 
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{I1,I2,I3} 2 

{I1,I2,I5} 2 
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L3 

Compare 
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Compare 
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Scan D 

Scan D 
Compare 

sup  2 

Figure 1 Generation of Frequent itemsets where 

minimum support count is 2 

 



 

   The Apriori algorithm uses a level-wise approach 

for generating association rules, where each level 

corresponds to the number of items that belong to 

the rule consequent described in Figure 1. Frequent 

itemsets do no mean association rule. One more 

step is required to convert these frequent itemsets 

into rules. If the minimum confidence threshold is 

70%, then the rules are generated. Since there are 

generated that are strong because confidence is 

greater than the minimum confidence.  

- R1: I1 I2^I5, Confidence = 2/7 = 28% 

R1 is rejected. 

- R2: I2 I1^I5, Confidence = 2/8= 25% 

R2 is rejected. 

- R3: I5 I1^I2, Confidence = 2/2 = 100% 

R3 is selected. 

- R4: I2^I5 I1, Confidence = 2/2 = 100%  

R4 is selected. 

- R5: I1^I5  I2, Confidence = 2/2 = 100% 

R5 is selected. 

- R6: I1^I2  I5, Confidence = 2/5= 40%  

R6 is rejected. 

 

3.2. The FP-growth Algorithm 

      As shown in [12], the main bottleneck of the 

Apriori-like methods is at the candidate set 

generation and test. This problem was dealt with by 

introducing a novel, compact data structure, called 

frequent pattern tree, or FP-tree then based on this 

structure an FP-tree-based pattern fragment growth 

method was developed, FP-growth. The algorithm 

is as shown in below. 

Algorithm: (FP-Growth) 

Input:  D – transaction database; s – minimum 

support threshold. 

Output: The complete set of frequent patterns. 

Method: call FP-growth(FP-tree, null). 

1. scan D to discover frequent items and their 

counts 

2. create the root of FP-tree labeled as null 

3. scan D and add each transaction to FP-tree 

(omitting non-frequent items) 

4. call FP-growth(FP-tree, null) 

   procedure FP-growth(FP-tree, ) { 

   if FP-tree contains a single path P 

   then for each combination of nodes in P do 

generate frequent itemset 

with support(,D)= min support of nodes in; 

else for each ai in header table of FP-tree do { 

generate frequent itemset = ai  with 

support(,D) = support(ai,D); construct 's 

conditional pattern base and 's conditional FP-

tree;  if FP-treethen FP-growth(FP-tree,); 

 } 

 The function insert-tree ([p/P], T) is performed 

as follows. It T has a child N such that N. item-

name = p.item-name, then increment N's count by 

1; else create a new node N, with its count 

initialized to 1, its parent link linked to T, and its 

node-link linked to the nodes with some (P, N) 

recursively. The result of FP growth is expressed in 

Figure 2. 

Header Table 

Item 

Id 

Sup-

Count 

Node 

Link 

I2 8 
 

I1 7 
 

I3 6 
 

I4 2 
 

I5 2 
 

 

Figure 2 The FP-Tree with Header Table 

3.3. The DynFP-growth Algorithm 

 The dynamic FP-tree reordering algorithm is a 

“promotion” to a higher order of at least one item is 

detected. The dynamic reordering one doesn’t have 

to rebuild the FP-tree even if the actual database is 

updated. This approach can provide a very quick 

response to any queries even on databases. Because 

the dynamic reordering process, [3] proposed a 

modification of the original structures, by replacing 

the singly linked list with a doubly linked list for 

linking the tree nodes to the header and adding a 

master-table to the same header. The algorithm is 

as shown in below. 

Algorithm (Dynamic FP-tree construction) 
Input: A transactional database DB and a minimum 

support threshold ξ. 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following 

steps: 

 The reorder () function is performed as 

follows: 

1. Gather the “promoted” items into a reorderList 

ordered according to their support (descending) and 

lexicographical order. 

2. Call checkpoint () to update the insertion order 

into the FP-tree.  

Null {} 

I2:8 

I1:5 

I3:2 

I5:1 

I4:1 I4:1 

I3:2 I3:2 

I1:2 

I5:1 



 

3. For each item from reorderList go through the 

list of linked nodes and for each of these nodes call 

moveUp (node) to place that node into the correct 

position in the FP-tree, according to the header’s 

master-table. The moveUp (node) function is 

defined as:  

 1. Repeat the steps (a. to g.) until the node and its 

current parent are in the properOrder 

a. Take the node’s parent’s parent (pparent) 

b. If parent has the same support as the node, 

remove the parent from its parent’s childNodes and 

assign it to newNode 

c. Else perform the following actions: 

    i. Create a newNode with the same item as the 

parent, but having the node’s support.  

    ii. Link it into the parent’s list of nodes with the    

same item. 

    iii. Adjust the support of the parent, by 

subtracting the node’s support 

    iv. Remove the node from the childNodes of the   

parent 

d. Replace the childNodes into the newNode with 

the childNodes from the node and update the 

parent link of the childNodes with their new parent 

(newNode). 

e. Set the parent link of the node to pparent (the 

original parent’s parent), initialize its childNodes 

with the newNode, and set the newNode’s parent to 

node. 

f. (optional step) If there is already an existingNode  

for the node’s item in the pparent’s childNodes, 

then call merge(existingNode, node), and continue 

with the existingNode as the current node.  

g. Otherwise insert the node into the childNodes of 

pparent.   

 The reorder items are I2:1, I3:1. DynFP-

growth does not depend on support but only on the 

database size, this is because the tree construction 

technique does not need the support information. 

The tree will contain all the database transactions 

and depending on the required support. The results 

in Figure 3 will contain only the itemsets that have 

their frequency greater than the required support. 

Item Id Sup-

Count 

Node 

Link 

I2 9  

I1 7 
 

3 7 
 

I4 2 

 

I5 2 
 

 

4. System Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 System Flow Diagram 

 

 The input of this system is transactional 

records from store database and these records are 

extracted frequent patterns by using Apriori, FP-

Growth and DynFP-Growth algorithms. Then the 

resulted frequent itemsets are generated as 

association rules by using Apriori algorithm. It is 

produced candidate generation. Then compare the 

frequent patterns with minimum support count.  

If support count is greater than or equal to 

minimum support for each item, the system 

determines the support count for candidate 

generation of pair items. If pair item’s support 

count is less than the support count, the itemsets 

remove from the system and produce the frequent 

patterns. When there is not more itemsets in the 

transaction file, the desire confidence is greater 

than or equal to minimum confidence. If the 

confidence is less than minimum confidence for 

itemsets, it removed these itemsets and produce 

rules. 
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Figure 3 The DynFP-Tree with Header Table 

 

Null{} 



 

The mining of the FP-tree is started from each 

frequent length 1 pattern and create its conditional 

pattern base and then construct its conditional FP-

tree, and perform mining recursively on such a tree. 

The DynFP-Growth algorithm reording the 

already FP-tree and perform promoted itemset on 

the FP-tree [13]. Then the resulted frequent 

patterns from each algorithm are used for 

comparing with run time and scalability.  

 

4.1. Experimental Result 

 The performance and scalability of the Apriori, 

FP-Growth and DynFP-Growth algorithms 

generated data sets with 150 transactions, and 

support counts between 1% and 4% are used. Any 

transaction may contain more than one frequent 

itemset [14]. The numbers of items in a transaction 

are numerous. The generated data sets depend on 

the number of items in a transaction and number of 

items in a frequent itemset, etc. The parameters to 

generate the test data sets are defined in Table 1. 

Table 2 Sample Itemsets 

|D| Number of transactions 

|T| Average size of the transactions 

|L| Number of maximal potentially large itemsets 

N Number of items 

  

 Table 2 describes the test data sets. It is 

generated for a number of items N = 10 and a 

maximum number of frequent itemsets |L| = 300. 

The average size of the transaction |T| is 10. 

 The run time results in millisecond are 

presented in Table 3 by applying Apriori, FP-

growth and DynFP-growth algorithms for support 

count of 3%.  

 

Table 3 Run Time of the system 

 

Transaction (K) 

Run Time Complexity (millisecond) 

Apriori FP-growth 
DynFP-

growth 

10 1210.00 605.00 363.00 

20 3630.00 1815.00 1089.00 

30 7260.00 3630.00 2178.00 

150 87846.00 43923.00 26353.80 

 

 In Figure 5 describes the graph of run time results. 

According to these result, DynFP-growth is more 

efficient than other both Apriori and FP-growth 

algorithms. 

 

 
Figure 5 Run Time Comparisons between  

Apriori and FP-Growth and DynFP-Growth 

The scalability can be defined as the ability of 

a system to keep its performance when the system 

size is scaled up [8]. The scalability function is 

        (p,p') = 

Where p=initial number of processor 

     p'= scaled number of processors 

     W= initial problem size 

     W'= scaled problem size 

      =scalability 

 This system used 150 transactions for 

scalability testing and one processor. This system 

used 150 transactions for scalability testing and one 

processor. There is 1 to 4 percent support count 

(%) used for scalability run time with processor. 

These results are presented in Table 4. 

Table 4 The scalability result of Apriori and FP-

Growth and DynFP-Growth algorithms 

 

 The best performance is obtained by the 

DynFP-growth algorithm according to scalability 

function. This system used one processor and 150 

transactions. The size of the system has 3MB for 

scalability testing. The execution time of the 

Apriori algorithm with support count 1% is three 

times longer than the execution time of the FP-

growth algorithm and up to five times longer than 

DynFP-growth. The execution time of the Apriori, 

FP-Growth and DynFP-Growth are different values 

of the support count on a data set with 150 

transactions. The Apriori algorithm has a lower 

scalability than the FP-growth and DynFP-growth 

 

Support count 

(%) 

scalability (millisecond) 

Apriori FP-growth 
DynFP-

growth 

1 93.00 90.70 86.50 

2 90.00 86.80 83.70 

3 87.00 84.40 80.20 

4 84.00 80.00 77.10 

p'W 
pW' 

(4.1) 



 

algorithms at support count of 4%.These result are 

presented in Table 4. 

 In Figure 6 describes the graph of scalability 

results .According to these result DynFP- growth’s 

scalability is better than Apriori and FP- growth 

algorithm. 

 

 
Figure 6 Scalability of the algorithms 

 

 

  

Figure 7 Graph of the compare algorithms 

This system’s compare result described in Figure 

7. This graph expressed the run time and scalability 

result of the system. The run time of DynFP- 

growth algorithm is more speedily than other 

Apriori and FP-growth algorithms. The scalability 

of DynFP-growth algorithm is faster than other 

Apriori and FP-growth algorithms. 

 

5. Conclusion 

      In this paper, the DynFP-growth algorithm 

behaves better than the Apriori and FP-growth 

algorithms according to the experimental data 

presented. The FP-growth algorithm needs at most 

two scans of the database, while the number of 

database scans for the candidate generation of 

Apriori increases with the dimension of the 

candidate itemsets. DynFP-growth algorithm does 

not need to multiple database scan. It scans only 

one database at a time for update on FP-tree. The 

performance of the FP-growth and DynFP-growth 

algorithms are not influenced by the support count. 

In this paper, the experimental results of frequent 

patterns are run time and scalability. So, DynFP-

growth algorithm’s scalability and run time is faster 

than Apriori and FP-growth algorithms. 
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