

Comparison of Apriori, FP-growth and Dynamic FP- growth for Frequent

Patterns

War War Cho, Nwe Nwe

University of Computer Studies, Hpa-an

 yinyinlayyoo.2010@gmail.com

Abstract

 Frequent pattern mining is one of the active

research themes in data mining. It is an important

role in all data mining tasks such as clustering,

classification, prediction and association analysis.

Frequent pattern is the most time consuming

process due to a massive number of patterns

generated. Frequent patterns are generated by

using association rule mining algorithms that use

candidate generation and association rules such as

Apriori algorithm, and the algorithms without

candidate set generation and FP-tree such as FP-

growth and DynFP-growth algorithms. In this

paper, this system used computer sales items for

generating frequent patterns by applying Apriori,

FP-Growth and DynFP-Growth algorithms. The

frequent patterns are used for comparing

performance results with run time and scalability.

The scalability and run time of DynFP-Growth

algorithm is faster than Apriori and FP-Growth

algorithms.

Keyword: frequent pattern mining, association

mining algorithms, performance improvements

1. Introduction

 Mining frequent patterns [16] or itemsets are a

fundamental and essential problem in many data

mining applications. These applications include the

discovery of association rules, strong rules,

correlations, sequential rules, episodes,

multidimensional patterns, and many other

important discovery tasks. Algorithm for extracting

and reconstructing of all association rules shows

the results of experiments carried out on real

datasets and it shows the usefulness of each

approach. Databases, has been adopted for a field

of research dealing with the automatic discovery of

implicit information of knowledge within databases

[9]. The implicit information within databases, and

mainly the interesting association relationships

among sets of objects, that lead to association rules,

may disclose useful patterns for decision support,

financial forecast, marketing policies, even medical

diagnosis and many other applications. As shown

in [10], mining association rules may require

iterative scanning of large databases [1- 5, 11, 12]

which is costly in processing. The system consists

of get transactions from the database, extracting

frequent itemsets using Apriori algorithm, FP-

Growth algorithm and DynFP-growth algorithm.

The system creates a transaction file which consists

of amount of sales data by scanning the data from

the database. The transaction file includes item

Names. Then, algorithms are used for mining the

frequent pattern with the minimum support count.

This system produces frequent patterns. Finally, the

system used the frequent patterns for comparing the

result with run time and scalability.

 A major step forward in improving the

performances of these algorithms was made by the

introduction of a novel, compact data structure,

referred to as frequent pattern tree, or FP-tree [11],

and the associated mining algorithm, FP-growth.

 The main difference between the two approaches

is that the Apriori-like techniques are based on

bottom-up generation of frequent itemset

combinations and the FPtree based ones are

partition-based, divide-and-conquer methods. After

conducting several performance studies developed

an improved FP-tree based technique, named

Dynamic FP-tree [6]. The developed method

clearly indicates a performance gain mainly when

applied on real world sized databases.

 The remaining of this paper is organized as

follows. The related work is described in section 2.

The main aspects of Apriori, FP-growth and

DynFP-growth algorithms and frequent itemsets

generation are presented in section 3. Section 4

described the system design. The paper is

concluded in section 5.

2. Related work

 The Apriori [15] is a basic algorithm for

finding frequent patterns. It has been described by

several variations for improving efficiency and

scalability. This algorithm is almost suffered

inherently from two problems; multiple database

scans that are costly and generating lots of

candidates.

 The frequent pattern tree or FP-tree as a prefix-

based tree structure, and an algorithm called FP-

growth. The FP-tree stores only the frequent items

in a header table which is sorted in descending

order. The highly compact nature of FP-tree

enhances the performance of the FP-growth. The

FP-tree construction requires two database scans.

 After conducting several performance studies

developed an improved FP-tree based technique,

named Dynamic FP-tree [16]. The developed

method clearly indicates a performance gain mainly

when applied on real world sized databases.

3. Mining Frequent Pattern Using

Algorithms

3.1. The Apriori Algorithm

 The Apriori algorithm used the data as shown

in Table1 for finding all frequent itemsets. The first

pass of the algorithm simply counts [7] item

occurrences to determine the large 1-itemsets. A

subsequent pass, say pass k, consists of two phases.

First, the large itemsets Lk-1 found in the (k-1)th

pass are used to generate the candidate itemsets Ck,

using the Apriori candidate generation function

(apriori-gen) described below. Next, the database is

scanned and the support of candidates in Ck is

counted. For fast counting, an efficient

determination if the candidates in Ck that are

contained in a given transaction t is needed. A

hash-tree data structure [11] is used for this

purpose. The Apriori algorithm is:

Input: Database D of transaction s; min-sup

Output: L, frequent itemsets in D.

L1 = {large 1-itemsets};

for (k = 2; Lk-1 ≠ Ø; k++)

begin

Ck = apriori-gen(Lk-1); //New candidates

 forall transactions t € D

 begin

Ct = subset(Ck, t);

//Candidates contained in t

forall candidates c € Ct do

c.count++;

end

 Lk = { c € Ck | c.count ≥ minsup }

End Answer = k Lk;

 The apriori-gen function takes as argument Lk-1,

the set of all large (k-1)-itemsets. It returns a

superset of the set of all large k-itemsets and is

described in [1]. This system used computer sales

center data items which are described in Table 1.

Table 1 Transactional Database

I1=Monitor

I2=CPU

I3=Motherboard

I4=Hard disk

I5=Memory

I6=Printer

I7=Speaker

I8=Casing

I9=UPS

I10=DVDR/W

TID Itemsets

T1 I1,I2,I3

T2 I1,I2,I4

T3 I2,I4

T4 I1,I2,I5

T5 I2,I3

T6 I2,I3

T7 I1,I3

T8 I1,I3

T9 I1,I2,I3,I5

T10 I1,I2

Item

set

Sup

count

I1 7

I2 8

I3 6

I4 2

I5 2

Item

set

Sup

count

I1 7

I2 8

I3 6

I4 2

I5 2

Item

Set

{I1,I2}

{I1,I3}

{I1,I4}

{I1,I5}

{I2,I3}

{I2,I4}

{I2,I5}

{I3,I4}

{I3,I5}

{I4,I5}

Item

Set

Sup.Co

unt

{I1,I2} 5

{I1,I3} 4

{I1,I4} 1

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

{I3,I4} 0

{I3,I5} 1

{I4,I5} 0

Itemse

t

Sup.

Cou

nt

{I1,I2} 5

{I1,I3} 4

{I1,I5} 2

{I2,I3} 4

{I2,I4} 2

{I2,I5} 2

Itemset

{I1,I2,I3}

{I1,I2,I5}

{I1,I3,I5}

{I2,I3,I4}

{I2,I3,I5}

Itemset Sup.C

ount

{I1,I2,I3} 2

{I1,I2,I5} 2

{I1,i3,I5} 1

{I2,I3,I4} 0

{I2,I3,I5} 1

Itemset Sup

.Co

unt

{I1,I2,I3} 2

{I1,I2,I5} 2

Scan D

L1

C2

C1

C2

L2

C3 C3

L3

Compare

sup_count 2

Compare

sup 2

Scan D

Scan D
Compare

sup 2

Figure 1 Generation of Frequent itemsets where

minimum support count is 2

 The Apriori algorithm uses a level-wise approach

for generating association rules, where each level

corresponds to the number of items that belong to

the rule consequent described in Figure 1. Frequent

itemsets do no mean association rule. One more

step is required to convert these frequent itemsets

into rules. If the minimum confidence threshold is

70%, then the rules are generated. Since there are

generated that are strong because confidence is

greater than the minimum confidence.

- R1: I1 I2^I5, Confidence = 2/7 = 28%

R1 is rejected.

- R2: I2 I1^I5, Confidence = 2/8= 25%

R2 is rejected.

- R3: I5 I1^I2, Confidence = 2/2 = 100%

R3 is selected.

- R4: I2^I5 I1, Confidence = 2/2 = 100%

R4 is selected.

- R5: I1^I5  I2, Confidence = 2/2 = 100%

R5 is selected.

- R6: I1^I2  I5, Confidence = 2/5= 40%

R6 is rejected.

3.2. The FP-growth Algorithm

 As shown in [12], the main bottleneck of the

Apriori-like methods is at the candidate set

generation and test. This problem was dealt with by

introducing a novel, compact data structure, called

frequent pattern tree, or FP-tree then based on this

structure an FP-tree-based pattern fragment growth

method was developed, FP-growth. The algorithm

is as shown in below.

Algorithm: (FP-Growth)

Input: D – transaction database; s – minimum

support threshold.

Output: The complete set of frequent patterns.

Method: call FP-growth(FP-tree, null).

1. scan D to discover frequent items and their

counts

2. create the root of FP-tree labeled as null

3. scan D and add each transaction to FP-tree

(omitting non-frequent items)

4. call FP-growth(FP-tree, null)

 procedure FP-growth(FP-tree, ) {

 if FP-tree contains a single path P

 then for each combination of nodes in P do

generate frequent itemset 

with support(,D)= min support of nodes in;

else for each ai in header table of FP-tree do {

generate frequent itemset = ai with

support(,D) = support(ai,D); construct 's

conditional pattern base and 's conditional FP-

tree; if FP-treethen FP-growth(FP-tree,);

 }

 The function insert-tree ([p/P], T) is performed

as follows. It T has a child N such that N. item-

name = p.item-name, then increment N's count by

1; else create a new node N, with its count

initialized to 1, its parent link linked to T, and its

node-link linked to the nodes with some (P, N)

recursively. The result of FP growth is expressed in

Figure 2.

Header Table

Item

Id

Sup-

Count

Node

Link

I2 8

I1 7

I3 6

I4 2

I5 2

Figure 2 The FP-Tree with Header Table

3.3. The DynFP-growth Algorithm

 The dynamic FP-tree reordering algorithm is a

“promotion” to a higher order of at least one item is

detected. The dynamic reordering one doesn’t have

to rebuild the FP-tree even if the actual database is

updated. This approach can provide a very quick

response to any queries even on databases. Because

the dynamic reordering process, [3] proposed a

modification of the original structures, by replacing

the singly linked list with a doubly linked list for

linking the tree nodes to the header and adding a

master-table to the same header. The algorithm is

as shown in below.

Algorithm (Dynamic FP-tree construction)
Input: A transactional database DB and a minimum

support threshold ξ.

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following

steps:

 The reorder () function is performed as

follows:

1. Gather the “promoted” items into a reorderList

ordered according to their support (descending) and

lexicographical order.

2. Call checkpoint () to update the insertion order

into the FP-tree.

Null {}

I2:8

I1:5

I3:2

I5:1

I4:1 I4:1

I3:2 I3:2

I1:2

I5:1

3. For each item from reorderList go through the

list of linked nodes and for each of these nodes call

moveUp (node) to place that node into the correct

position in the FP-tree, according to the header’s

master-table. The moveUp (node) function is

defined as:

 1. Repeat the steps (a. to g.) until the node and its

current parent are in the properOrder

a. Take the node’s parent’s parent (pparent)

b. If parent has the same support as the node,

remove the parent from its parent’s childNodes and

assign it to newNode

c. Else perform the following actions:

 i. Create a newNode with the same item as the

parent, but having the node’s support.

 ii. Link it into the parent’s list of nodes with the

same item.

 iii. Adjust the support of the parent, by

subtracting the node’s support

 iv. Remove the node from the childNodes of the

parent

d. Replace the childNodes into the newNode with

the childNodes from the node and update the

parent link of the childNodes with their new parent

(newNode).

e. Set the parent link of the node to pparent (the

original parent’s parent), initialize its childNodes

with the newNode, and set the newNode’s parent to

node.

f. (optional step) If there is already an existingNode

for the node’s item in the pparent’s childNodes,

then call merge(existingNode, node), and continue

with the existingNode as the current node.

g. Otherwise insert the node into the childNodes of

pparent.

 The reorder items are I2:1, I3:1. DynFP-

growth does not depend on support but only on the

database size, this is because the tree construction

technique does not need the support information.

The tree will contain all the database transactions

and depending on the required support. The results

in Figure 3 will contain only the itemsets that have

their frequency greater than the required support.

Item Id Sup-

Count

Node

Link

I2 9

I1 7

3 7

I4 2

I5 2

4. System Design

Figure 4 System Flow Diagram

 The input of this system is transactional

records from store database and these records are

extracted frequent patterns by using Apriori, FP-

Growth and DynFP-Growth algorithms. Then the

resulted frequent itemsets are generated as

association rules by using Apriori algorithm. It is

produced candidate generation. Then compare the

frequent patterns with minimum support count.

If support count is greater than or equal to

minimum support for each item, the system

determines the support count for candidate

generation of pair items. If pair item’s support

count is less than the support count, the itemsets

remove from the system and produce the frequent

patterns. When there is not more itemsets in the

transaction file, the desire confidence is greater

than or equal to minimum confidence. If the

confidence is less than minimum confidence for

itemsets, it removed these itemsets and produce

rules.

User

I2:9

I1:5

I3:2

I5:1

I4:1 I4:1

I3:3 I3:2

I1:2

I5:1

Start

Is Admin

or User?
Registration

Admin

Delete/ Add

items

Database

Get Transactions

DynFP-Growth

Algorithm
FP-Growth

Algorithm

Apriori

Algorithm

Generate frequent

pattern

Comparison of

algorithms with run

time and scalability
End

Generate

Association

Rules

Login

Select Item

Figure 3 The DynFP-Tree with Header Table

Null{}

The mining of the FP-tree is started from each

frequent length 1 pattern and create its conditional

pattern base and then construct its conditional FP-

tree, and perform mining recursively on such a tree.

The DynFP-Growth algorithm reording the

already FP-tree and perform promoted itemset on

the FP-tree [13]. Then the resulted frequent

patterns from each algorithm are used for

comparing with run time and scalability.

4.1. Experimental Result

 The performance and scalability of the Apriori,

FP-Growth and DynFP-Growth algorithms

generated data sets with 150 transactions, and

support counts between 1% and 4% are used. Any

transaction may contain more than one frequent

itemset [14]. The numbers of items in a transaction

are numerous. The generated data sets depend on

the number of items in a transaction and number of

items in a frequent itemset, etc. The parameters to

generate the test data sets are defined in Table 1.

Table 2 Sample Itemsets

|D| Number of transactions

|T| Average size of the transactions

|L| Number of maximal potentially large itemsets

N Number of items

 Table 2 describes the test data sets. It is

generated for a number of items N = 10 and a

maximum number of frequent itemsets |L| = 300.

The average size of the transaction |T| is 10.

 The run time results in millisecond are

presented in Table 3 by applying Apriori, FP-

growth and DynFP-growth algorithms for support

count of 3%.

Table 3 Run Time of the system

Transaction (K)

Run Time Complexity (millisecond)

Apriori FP-growth
DynFP-

growth

10 1210.00 605.00 363.00

20 3630.00 1815.00 1089.00

30 7260.00 3630.00 2178.00

150 87846.00 43923.00 26353.80

 In Figure 5 describes the graph of run time results.

According to these result, DynFP-growth is more

efficient than other both Apriori and FP-growth

algorithms.

Figure 5 Run Time Comparisons between

Apriori and FP-Growth and DynFP-Growth

The scalability can be defined as the ability of

a system to keep its performance when the system

size is scaled up [8]. The scalability function is

 (p,p') =

Where p=initial number of processor

 p'= scaled number of processors

 W= initial problem size

 W'= scaled problem size

  =scalability

 This system used 150 transactions for

scalability testing and one processor. This system

used 150 transactions for scalability testing and one

processor. There is 1 to 4 percent support count

(%) used for scalability run time with processor.

These results are presented in Table 4.

Table 4 The scalability result of Apriori and FP-

Growth and DynFP-Growth algorithms

 The best performance is obtained by the

DynFP-growth algorithm according to scalability

function. This system used one processor and 150

transactions. The size of the system has 3MB for

scalability testing. The execution time of the

Apriori algorithm with support count 1% is three

times longer than the execution time of the FP-

growth algorithm and up to five times longer than

DynFP-growth. The execution time of the Apriori,

FP-Growth and DynFP-Growth are different values

of the support count on a data set with 150

transactions. The Apriori algorithm has a lower

scalability than the FP-growth and DynFP-growth

Support count

(%)

scalability (millisecond)

Apriori FP-growth
DynFP-

growth

1 93.00 90.70 86.50

2 90.00 86.80 83.70

3 87.00 84.40 80.20

4 84.00 80.00 77.10

p'W
pW'

(4.1)

algorithms at support count of 4%.These result are

presented in Table 4.

 In Figure 6 describes the graph of scalability

results .According to these result DynFP- growth’s

scalability is better than Apriori and FP- growth

algorithm.

Figure 6 Scalability of the algorithms

Figure 7 Graph of the compare algorithms

This system’s compare result described in Figure

7. This graph expressed the run time and scalability

result of the system. The run time of DynFP-

growth algorithm is more speedily than other

Apriori and FP-growth algorithms. The scalability

of DynFP-growth algorithm is faster than other

Apriori and FP-growth algorithms.

5. Conclusion

 In this paper, the DynFP-growth algorithm

behaves better than the Apriori and FP-growth

algorithms according to the experimental data

presented. The FP-growth algorithm needs at most

two scans of the database, while the number of

database scans for the candidate generation of

Apriori increases with the dimension of the

candidate itemsets. DynFP-growth algorithm does

not need to multiple database scan. It scans only

one database at a time for update on FP-tree. The

performance of the FP-growth and DynFP-growth

algorithms are not influenced by the support count.

In this paper, the experimental results of frequent

patterns are run time and scalability. So, DynFP-

growth algorithm’s scalability and run time is faster

than Apriori and FP-growth algorithms.

References
[1] R. Agrawal, R. Srikant. “Fast algorithms for mining

association rules in large databases”.

[2] A. Ashoka Savasere, B. Navathe. “An Efficient

Algorithm for Mining Association Rules in Large

Databases.”

[3] C. Cornelia Győrödi, Robert Győrödi, T. Cofeey & S.

Holban – ”Mining association rules using Dynamic

FP-trees”.

[4] L. Cristofor, “Mining Rules in Single-Table and

Multiple-Table Databases”.

[5] M. H. Dunham. “Data Mining. Introductory and

Advanced Topics”. Prentice Hall, 2003.

[6] U.M. Fayyad, et al.: “From Data Mining to

Knowledge Discovery: An Overview”, 1996

[7] G. Grahne, & Zhu, J. ”Fast Algorithm for frequent

Itemset Mining Using FP-Trees”.

[8] A. Gupta and V. Kumar, “Scalability of Parallel

 Algorithms for Matrix Multiplication”.

[9] C. Győrödi, R. Győrödi. “Mining Association Rules

in Large Databases”. Oradea, Romania, 2002.

[10] R. Győrödi, C. Győrödi. “Architectures of Data

Mining Systems”. Oradea, Romania, 2002.

[11] C. Győrödi, T. Cofeey & S. Holban, Robert

Győröd– “Mining association rules using Dynamic

P-trees”, 2003.

[12] J. Han, J. Pei, Y. Yin. “Mining Frequent Patterns

without Candidate Generation”. 2000.

[13] J. Han, M. Kamber, “Data Mining Concepts and

Techniques”, San Francisco

 [14] C. Silverstein, Brin, S., Motwani, R., and Ullman, J.

1998. Scalable techniques for mining causal

structures. 1998

[15] R. Srikant, and Agrawal, R. 1997, “Mining

association rules with item constraints”, 1997

[16] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li,

“New algorithms for Fast Discovery of Association

Rules,” 1997.

